2,954 research outputs found

    Muon anomaly and a lower bound on higgs mass due to a light stabilized radion in the Randall-Sundrum model

    Full text link
    We investigate the Randall-Sundrum model with a light stabilized radion (required to fix the size of the extra dimension) in the light of muon anomalous magnetic moment aμ[=(g−2)2]a_\mu [= \frac{(g - 2)}{2}]. Using the recent data (obtained from the E821 experiment of the BNL collaboration) which differs by 2.6σ2.6 \sigma from the Standard Model result, we obtain constraints on radion mass \mphi and radion vev \vphi. In the presence of a radion the beta functions \beta(\l) and β(gt)\beta(g_t) of higgs quartic coupling (\l) and top-Yukawa coupling (gtg_t) gets modified. We find these modified beta functions. Using these beta functions together with the anomaly constrained \mphi and \vphi, we obtain lower bound on higgs mass mhm_h. We compare our result with the present LEP2 bound on mhm_h.Comment: Version to be appeared in IJMP

    High-sensitivity tracing of stable isotope labeled Ag nanoparticles in environmental samples using MC-ICP-MS

    Get PDF
    Silver nanoparticles (Ag NPs) are among the most widely used engineered nanomaterials and this warrants further investigation of their behaviour and fate in the environment. To support such work, we developed new techniques for efficient tracing of Ag NPs that are produced from, and hence labelled with, enriched 109 28 Ag (Ag-En). The methods encompass a one-step anion exchange separation of Ag from the sample matrix and precise determination of 109Ag/107Ag ratios and 109Ag abundances by multiple-collector ICP-MS. The sample preparation procedure has an Ag yield of 104 ± 13% (1 SD) and a procedural Ag blank of less than 7 pg, enabling analysis of samples with only trace Ag contents. Analyses of Ag solutions and realistic samples show that careful correction of memory effects is paramount for ensuring data quality. Using appropriate procedures, the 109Ag/107Ag ratios of samples containing Ag-En can be determined to a precision and trueness of better than about 0.5%, when more than 0.5 ng Ag are available for analysis. Even if Ag is only present at 50 pg or less, the Ag isotope ratios and Ag-En concentrations of samples can be measured to better than 5 to 10%. The methods are therefore able to resolve the presence of 1 pg of Ag-En in samples that contain as little as 10 pg and to up to 1 ng of natural Ag. As such, the techniques allow robust detection and quantification of Ag-En in environmental samples even when highly variable quantities of Ag-En and natural Ag are present. The new methodology thus enables the use of stable isotope tracing to investigate the fate of Ag NPs in complex environmental systems at dosing concentrations similar to the predicted environmental concentrations and for very small samples, whilst also providing high sample throughput

    Maximum Significance at the LHC and Higgs Decays to Muons

    Get PDF
    We present a new way to define and compute the maximum significance achievable for signal and background processes at the LHC, using all available phase space information. As an example, we show that a light Higgs boson produced in weak--boson fusion with a subsequent decay into muons can be extracted from the backgrounds. The method, aimed at phenomenological studies, can be incorporated in parton--level event generators and accommodate parametric descriptions of detector effects for selected observables.Comment: 7 pages, 2 figures, changes to wording and new references, published versio

    The effect of flooding on the exchange of the volatile C<sub>2</sub>-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere

    Get PDF
    International audienceThe effect of root inundation on the leaf emissions of ethanol, acetaldehyde and acetic acid was investigated with 2?3 years old tree seedlings of four Amazonian floodplain species by applying dynamic cuvette systems under greenhouse conditions. Emissions were monitored over a period of several days of inundation using a combination of Proton Transfer Reaction Mass Spectrometry (PTR-MS) and conventional techniques (HPLC, ion chromatography). Under non-flooded conditions, none of the species exhibited significant emissions of any of the compounds. A slight deposition of acetaldehyde and acetic acid was mainly observed, instead. Tree species specific variations in deposition velocities were largely due to variations in stomatal conductance. Flooding of the roots resulted in leaf emissions of ethanol and acetaldehyde by all species, while emissions of acetic acid occurred only by the species exhibiting the highest ethanol and acetaldehyde emission rates. All three compounds showed a similar diurnal emission profile, each displaying an emission burst in the morning, followed by a decline in the evening. This concurrent behavior supports the conclusion, that all three compounds emitted by the leaves are derived from ethanol produced in the roots by alcoholic fermentation, transported to the leaves with the transpiration stream and finally partly converted to acetaldehyde and acetic acid by enzymatic processes. Co-emissions and peaking in the early morning confirmed that root ethanol, after transportation with the transpiration stream to the leaves and enzymatic oxidation to acetaldehyde and acetate, is the metabolic precursor for all compounds emitted. Emission rates substantially varied among tree species, with maxima differing by up to two orders of magnitude (3?200 nmol m?2 min?1 for ethanol and 5?500 nmol m?2 min?1 for acetaldehyde). Acetic acid emissions reached 12 nmol m?2 min?1. The observed differences in emission rates between the tree species are discussed with respect to their root adaptive strategies to tolerate long term flooding, providing an indirect line of evidence that the root ethanol production is a major factor determining the foliar emissions. Species which develop morphological root structures allowing for enhanced root aeration produced less ethanol and showed much lower emissions compared to species which lack gas transporting systems, and respond to flooding with substantially enhanced fermentation rates. The pronounced differences in the relative emissions of ethanol to acetaldehyde and acetic acid between the tree species indicate that not only the ethanol production in the roots but also the metabolic conversion in the leaf is an important factor determining the release of these compounds to the atmosphere

    Lyapunov exponent and natural invariant density determination of chaotic maps: An iterative maximum entropy ansatz

    Full text link
    We apply the maximum entropy principle to construct the natural invariant density and Lyapunov exponent of one-dimensional chaotic maps. Using a novel function reconstruction technique that is based on the solution of Hausdorff moment problem via maximizing Shannon entropy, we estimate the invariant density and the Lyapunov exponent of nonlinear maps in one-dimension from a knowledge of finite number of moments. The accuracy and the stability of the algorithm are illustrated by comparing our results to a number of nonlinear maps for which the exact analytical results are available. Furthermore, we also consider a very complex example for which no exact analytical result for invariant density is available. A comparison of our results to those available in the literature is also discussed.Comment: 16 pages including 6 figure

    Discovery potential of top-partners in a realistic composite Higgs model with early LHC data

    Full text link
    Composite Higgs models provide a natural, non-supersymmetric solution to the hierarchy problem. In these models, one or more sets of heavy top-partners are typically introduced. Some of these new quarks can be relatively light, with a mass of a few hundred GeV, and could be observed with the early LHC collision data expected to be collected during 2010. We analyse in detail the collider signatures that these new quarks can produce. We show that final states with two (same-sign) or three leptons are the most promising discovery channels. They can yield a 5 sigma excess over the Standard Model expectation already with the 2010 LHC collision data. Exotic quarks of charge 5/3 are a distinctive feature of this model. We present a new method to reconstruct their masses from their leptonic decay without relying on jets in the final state.Comment: 28 pages 11 Figures 7 Tables, minor changes, added references, matches published versio

    Introduction to HOBIT, a b-Jet Identification Tagger at the CDF Experiment Optimized for Light Higgs Boson Searches

    Full text link
    We present the development and validation of the Higgs Optimized b Identification Tagger (HOBIT), a multivariate b-jet identification algorithm optimized for Higgs boson searches at the CDF experiment at the Fermilab Tevatron. At collider experiments, b taggers allow one to distinguish particle jets containing B hadrons from other jets; these algorithms have been used for many years with great success at CDF. HOBIT has been designed specifically for use in searches for light Higgs bosons decaying via H ! b\bar{b}. This fact combined with the extent to which HOBIT synthesizes and extends the best ideas of previous taggers makes HOBIT unique among CDF b-tagging algorithms. Employing feed-forward neural network architectures, HOBIT provides an output value ranging from approximately -1 ("light-jet like") to 1 ("b-jet like"); this continuous output value has been tuned to provide maximum sensitivity in light Higgs boson search analyses. When tuned to the equivalent light jet rejection rate, HOBIT tags 54% of b jets in simulated 120 GeV/c2 Higgs boson events compared to 39% for SecVtx, the most commonly used b tagger at CDF. We present features of the tagger as well as its characterization in the form of b-jet finding efficiencies and false (light-jet) tag rates.Comment: 40 pages, 16 figue

    The effects of climatic fluctuations and extreme events on running water ecosystems

    Get PDF
    Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanistic framework for predicting potential impacts of environmental fluctuations on running water ecosystems by scaling up effects of fluctuations from individuals to entire ecosystems. This framework requires integration of four key components: effects of the environment on individual metabolism, metabolic and biomechanical constraints on fluctuating species interactions, assembly dynamics of local food webs and mapping the dynamics of the meta-community onto ecosystem function. We illustrate the framework by developing a mathematical model of environmental fluctuations on dynamically assembling food webs. We highlight (currently limited) empirical evidence for emerging insights and theoretical predictions. For example, widely supported predictions about the effects of environmental fluctuations are: high vulnerability of species with high per capita metabolic demands such as large-bodied ones at the top of food webs; simplification of food web network structure and impaired energetic transfer efficiency; reduced resilience and top-down relative to bottom-up regulation of food web and ecosystem processes. We conclude by identifying key questions and challenges that need to be addressed to develop more accurate and predictive bio-assessments of the effects of fluctuations, and implications of fluctuations for management practices in an increasingly uncertain world
    • …
    corecore